CARE-WHS

Whole Heart Segmentation

Motivation

Cardiovascular diseases (CVDs), as the leading cause of death globally, necessitate precise morphological and pathological quantification through segmentation of crucial cardiac structures from medical images. However, whole heart segmentation (WHS) faces challenges including heart shape variability during the cardiac cycle, clinical artifacts like motion and poor contrast-to-noise ratio, as well as domain shifts in multi-center data and the distinct modalities of CT and MRI. The WHS track serves to inspire innovative solutions in the realms of biomedical imaging and computer vision, striving to overcome these challenges and advance automated WHS for enhanced understanding and treatment of CVDs.

Task

Figure 1. Overview of the WHS track

The objective of this track is to achieve precise segmentation of seven substructures of the whole heart, with robustness against domain shifts (see Fig. 1).
The specific substructures, each associated with a unique label value, are:

  1. Left Ventricular Blood Cavity (LV) - Label value: 500
  2. Right Ventricular Blood Cavity (RV) - Label value: 600
  3. Left Atrial Blood Cavity (LA) - Label value: 420
  4. Right Atrial Blood Cavity (RA) - Label value: 550
  5. Myocardium of the Left Ventricle (Myo) - Label value: 205
  6. Ascending Aorta (AO) - Label value: 820; defined as the aortic trunk from the aortic valve to the superior level of the atria.
  7. Pulmonary Artery (PA) - Label value: 850; defined as the initial segment from the pulmonary valve to the bifurcation point.

Note on Great Vessels: The great vessels of interest, comprising the ascending aorta and pulmonary artery, are specifically defined due to variations in the fields of view across different scans. This uniform definition is crucial for ensuring consistency across evaluations. During the assessment, segmentation results for these vessels will be truncated to average lengths measured in healthy subjects, although participants are encouraged to extend their segmentation beyond these lengths. Our provided manual segmentations similarly cover more than the defined trunk measurements.

We will rank participant methods based on the settings (​Lb1–Lb4) detailed in the following table:

Leaderboard (Lb) for WHS track across modalities and evaluation settings.​​ Lb1–Lb4 represent performance from different test centers and modalities (e.g., Lb1 = CT segmentation peformance on center A and B). In-distribution refers to centers included in the training data, while out-of-distribution refers to unseen centers not used during training.
Modality In-distribution Out-of-distribution
CT Lb1 Lb2
MR Lb3 Lb4

Data

Training data

Center Num. patients Modalities
A 20 CT
B 20 CT
C & D 20 MRI
E 26 MRI

Validation data

Center Num. patients Modalities
A 20 CT
B 10 CT
C & D 20 MR

Test data

Center Num. patients Modalities
A 20 CT
B 14 CT
C & D 20 MRI
F 16 MRI
G 20 CT

Metrics

The performance of segmentation results will be assessed through:

Rules

Registration

To access the dataset, please register here.

Leaderboards

WHS CT (ID)

Team LV_Dice↑ Myo_Dice↑ RV_Dice↑ LA_Dice↑ RA_Dice↑ AO_Dice↑ PA_Dice↑ WHS_Dice↑ WHS_HD(mm)↓ WHS_ASD(mm)↓
wei_yuan 0.9426 0.9300 0.9284 0.9653 0.9240 0.9604 0.8783 0.9410 12.5151 0.7237
dzr 0.9440 0.9294 0.9271 0.9625 0.9208 0.9595 0.8749 0.9400 12.9502 0.7416
huangzh 0.9398 0.9298 0.9239 0.9631 0.9189 0.9601 0.8661 0.9381 12.8066 0.7535
Cardiac
Endeavours
0.9421 0.9289 0.9224 0.9646 0.9203 0.9600 0.8630 0.9381 13.1335 0.7525
Nacho 0.9430 0.9272 0.9228 0.9616 0.9184 0.9580 0.8694 0.9378 12.8374 0.7629
spz312 0.9421 0.9270 0.9237 0.9607 0.9167 0.9591 0.8687 0.9374 13.7740 0.7772
Zhiyou Lin 0.9426 0.9242 0.9207 0.9604 0.9193 0.9568 0.8652 0.9361 15.9188 0.7788
Space 0.9344 0.9114 0.9078 0.9617 0.8829 0.9502 0.8490 0.9230 14.8967 0.9549
ImFusion 0.9209 0.8932 0.9041 0.9398 0.9076 0.9206 0.8492 0.9150 17.3939 1.1766
kwh 0.8859 0.7872 0.7052 0.8637 0.6865 0.8949 0.6599 0.8057 36.1450 2.9919

WHS CT (OOD)

Team LV_Dice↑ Myo_Dice↑ RV_Dice↑ LA_Dice↑ RA_Dice↑ AO_Dice↑ PA_Dice↑ WHS_Dice↑ WHS_HD(mm)↓ WHS_ASD(mm)↓
wei_yuan 0.9754 0.9742 0.9617 0.9839 0.9695 0.9805 0.9561 0.9740 11.6691 0.3616
dzr 0.9772 0.9755 0.9621 0.9830 0.9670 0.9825 0.9527 0.9739 11.9296 0.3668
huangzh 0.9738 0.9719 0.9561 0.9838 0.9653 0.9791 0.9503 0.9713 11.8991 0.3935
Cardiac
Endeavours
0.9738 0.9712 0.9553 0.9791 0.9610 0.9757 0.9522 0.9692 16.3845 0.4333
Nacho 0.9749 0.9725 0.9572 0.9802 0.9638 0.9798 0.9527 0.9708 12.1136 0.4074
spz312 0.9763 0.9746 0.9552 0.9841 0.9639 0.9829 0.9482 0.9721 12.3174 0.3887
Zhiyou Lin 0.9721 0.9675 0.9557 0.9806 0.9658 0.9823 0.9526 0.9697 13.8909 0.4089
Space 0.8507 0.9456 0.5362 0.7182 0.8674 0.7533 0.7401 0.8099 48.5065 2.5080
ImFusion 0.9112 0.8980 0.8953 0.9328 0.9235 0.9195 0.8888 0.9135 19.9910 1.2760
kwh 0.9210 0.8349 0.6574 0.9479 0.6643 0.9078 0.7401 0.8257 39.0210 2.7931

WHS MR (ID)

Team LV_Dice↑ Myo_Dice↑ RV_Dice↑ LA_Dice↑ RA_Dice↑ AO_Dice↑ PA_Dice↑ WHS_Dice↑ WHS_HD(mm)↓ WHS_ASD(mm)↓
wei_yuan 0.9354 0.8496 0.9148 0.8959 0.8892 0.8966 0.8148 0.8992 24.7081 1.1629
dzr 0.9329 0.8467 0.9187 0.8937 0.8890 0.8948 0.7973 0.8979 29.6365 1.2133
huangzh 0.9343 0.8503 0.9056 0.8825 0.8725 0.8887 0.8001 0.8913 35.8354 1.6442
Cardiac
Endeavours
0.9331 0.8473 0.9115 0.8839 0.8837 0.8957 0.8079 0.8948 27.7563 1.3423
Nacho 0.9323 0.8439 0.9143 0.8862 0.8875 0.8932 0.8068 0.8951 24.0996 1.2457
spz312 0.9164 0.8321 0.9169 0.8927 0.8768 0.8929 0.8099 0.8888 42.4716 2.1076
Zhiyou Lin 0.9357 0.8394 0.9100 0.8817 0.8876 0.8864 0.7815 0.8937 36.7519 1.4858
Space 0.9323 0.8414 0.9008 0.8839 0.8855 0.8891 0.8091 0.8899 29.6204 1.7214
ImFusion 0.4201 0.1910 0.0924 0.3747 0.1258 0.0010 0.0000 0.2183 86.5388 20.5581
kwh 0.9303 0.8404 0.9063 0.8672 0.8612 0.8851 0.7992 0.8852 48.5327 1.9555

WHS MR (OOD)

Team LV_Dice↑ Myo_Dice↑ RV_Dice↑ LA_Dice↑ RA_Dice↑ AO_Dice↑ PA_Dice↑ WHS_Dice↑ WHS_HD(mm)↓ WHS_ASD(mm)↓
wei_yuan 0.9426 0.8235 0.8735 0.9116 0.8897 0.9106 0.8848 0.8959 20.6044 1.5678
dzr 0.9348 0.8232 0.8742 0.9080 0.8880 0.9112 0.8818 0.8934 21.2980 1.5955
huangzh 0.9462 0.8358 0.8907 0.9056 0.8881 0.9044 0.8766 0.8969 20.7411 1.5648
Cardiac
Endeavours
0.9449 0.8329 0.8798 0.9065 0.8903 0.9126 0.8850 0.8965 21.6923 1.5574
Nacho 0.9310 0.8234 0.8772 0.9042 0.8903 0.9077 0.8816 0.8923 21.4862 1.6170
spz312 0.9364 0.8129 0.8644 0.9103 0.8812 0.9058 0.8753 0.8895 22.2377 1.6504
Zhiyou Lin 0.9069 0.7664 0.8718 0.9053 0.8852 0.9018 0.8591 0.8764 28.9588 1.9135
Space 0.9411 0.8355 0.8815 0.9081 0.8862 0.9032 0.8666 0.8947 21.9386 1.5576
ImFusion 0.2172 0.1051 0.0296 0.2463 0.0000 0.0004 0.0000 0.1225 88.9726 26.1159
kwh 0.9017 0.7860 0.8264 0.8997 0.8714 0.8850 0.8484 0.8711 41.6986 2.1071

Citations

Please cite these papers when you use the data for publications:

@article{Zhuang2016MSMMA,
  Author = {Zhuang, Xiahai and Shen, Juan},
  Title = {Multi-scale patch and multi-modality atlases for whole heart
     segmentation of MRI},
  Journal = {Medical Image Analysis},
  Year = {2016},
  Volume = {31},
  Pages = {77-87},
}

@article{Zhuang2019MvMM,
  Author = {Zhuang, Xiahai},
  Title = {Multivariate Mixture Model for Myocardial Segmentation Combining
     Multi-Source Images},
  Journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
  Year = {2019},
  Volume = {41},
  Number = {12},
  Pages = {2933-2946},
}

@article{GAO2023BayeSeg,
  Author = {Gao, Shangqi and Zhou, Hangqi and Gao, Yibo and Zhuang, Xiahai},
  Title = {BayeSeg: Bayesian modeling for medical image segmentation with
     interpretable generalizability},
  Journal = {Medical Image Analysis},
  Year = {2023},
  Volume = {89},
  Pages = {102889},
}